<sub id="bvzrl"><dfn id="bvzrl"><mark id="bvzrl"></mark></dfn></sub>

    <sub id="bvzrl"><var id="bvzrl"><ins id="bvzrl"></ins></var></sub>
    <sub id="bvzrl"><dfn id="bvzrl"><mark id="bvzrl"></mark></dfn></sub>

          <sub id="bvzrl"><listing id="bvzrl"></listing></sub>

          <sub id="bvzrl"><listing id="bvzrl"><mark id="bvzrl"></mark></listing></sub>
            <sub id="bvzrl"><listing id="bvzrl"><mark id="bvzrl"></mark></listing></sub>

            • 信箱
            • 捐贈
            • 常用資源
            • 舊版網站
            • English

            學術活動

            首頁 - 學術活動 - 正文

            【學術通知】香港大學研究助理王玥:共享單車系統的綠色調度問題

            • 發布日期:2020-12-28
            • 點擊數:

              

            喻園管理論壇2020年第38期(總第655期)

            演講主題: 共享單車系統的綠色調度問題

            主 講 人: 王   玥,香港大學研究助理

            主 持 人: 胡   鵬,生產運作與物流管理系教授

            活動時間: 2020年12月28日(周一)15:15-16:00

            網絡直播平臺: 騰訊會議,會議ID:114 143 173

            主講人簡介:

            王玥,女,1993年生,華中科技大學物流系統工程專業本科,英國帝國理工交通專業碩士,香港大學交通專業博士,現為在香港大學從事研究助理工作。主要研究領域涵蓋共享單車的調度與再分配、優化問題和啟發式算法等領域,擅長用算法解決物流及交通領域的實際問題。曾負責交通工程、運輸系統工程等課程的助教工作,并指導本科生及研究生的畢業論文。曾參加歐洲運籌學大會(EURO),交通研究委員會年會(TRB)等多項國際會議并作報告。

            活動簡介:

            The Bike Repositioning Problem (BRP) has raised many researchers’ attention in recent years to improve the service quality of Bike Sharing Systems (BSSs). It is mainly about designing the routes and loading instructions for the vehicles to transfer bikes among stations in order to achieve a desirable state. This study tackles a static green BRP that aims to minimize the CO2emissions of the repositioning vehicle besides achieving the target inventory level at stations as much as possible within the time budget. Two types of bikes are considered, including usable and broken bikes. The Enhanced Artificial Bee Colony (EABC) algorithm is adopted to generate the vehicle route. Two methods, namely heuristic and exact methods, are proposed and incorporated into the EABC algorithm to compute the loading/unloading quantities at each stop. Computational experiments were conducted on the real-world instances having 10-300 stations. The results indicate that the proposed solution methodology that relies on the heuristic loading method can provide optimal solutions for small instances. For large-scale instances, it can produce better feasible solutions than two benchmark methodologies in the literature.

            學院要聞

            • 1
            • 2
            • 3
            • 4
            • 5
            博乐彩票